OpenAI (Tech Preview) operation
The OpenAI (Tech Preview) connector Operations lets you discover and Invoke AI models on OpenAI. You can use it to generate content, create images, generate embeddings, or structured outputs.
Browsing
When you import an operation or browse objects, the connector presents the available object types based on the selected operation:
- Generate Operation: Lists available sub-actions (Text, Images, Embeddings, Structured Output)
Each object type has corresponding request and response profiles that are imported during the browse process.
Generate operation
Use Generate operation to invoke OpenAI models for one-time content generation requests. This operation supports four sub-actions (object types):
- Generate Text
- Generate Image
- Generate Embedding
- Generate Structured Output
Generate text
Produces AI-generated text (answers, summaries, creative content, code, or responses) from text prompts using GPT models.
Before you begin
- Ensure your OpenAI account has access to the desired model.
- Prepare JSON that matches the text generation schema.
- Choose an appropriate model (for example,
gpt-4o,gpt-4o-mini,gpt-4-turbo,gpt-3.5-turbo, etc.)
Configure
- Create a new Generate operation or click Import Operation.
- Select Action Type: Generate Text.
- Click Next to import Request and Response profiles.
- Configure mapping for your input prompt and model selection.
Request Schema (GENERATE TEXT)
{
"model": "gpt-4o-mini",
"input": "Explain quantum computing in simple terms",
"instructions": "You are a helpful science educator. Explain concepts clearly.",
"temperature": 0.7,
"max_output_tokens": 500,
"top_p": 1.0
}
Response Schema (GENERATE TEXT)
{
"id": "resp_abc123",
"object": "response",
"created_at": 1699000000,
"model": "gpt-4o-mini",
"status": "completed",
"output": [
{
"type": "message",
"role": "assistant",
"content": [
{
"type": "output_text",
"text": "Quantum computing is a type of computing that uses..."
}
]
}
],
"usage": {
"input_tokens": 25,
"output_tokens": 150,
"total_tokens": 175
}
}
Generate image
Creates images from text prompts using OpenAI's image generation models.
Before you begin
- Ensure your account has access to image generation models.
- Choose an image-capable model (e.g.,
gpt-image-1,dall-e-2). - Prepare JSON that matches the image generation schema.
Configure
- Create a new Generate operation or click Import Operation.
- Select Action Type: Generate Image
- Click Next to import Request and Response profiles.
- Configure mapping for your image prompt and parameters.
Request Schema (GENERATE IMAGE)
{
"prompt": "A futuristic city skyline at sunset with flying cars",
"model": "gpt-image-1",
"n": 1,
"size": "1024x1024",
"quality": "high",
"output_format": "png",
"background": "auto"
}
Response Schema (GENERATE IMAGE)
{
"created": 1699000000,
"data": [
{
"b64_json": "iVBORw0KGgoAAAANSUhEUgAA..."
}
],
"background": "opaque",
"output_format": "png",
"quality": "high",
"size": "1024x1024",
"usage": {
"input_tokens": 50,
"output_tokens": 1000,
"total_tokens": 1050
}
}
Generate embedding
Returns numerical vector embeddings for input text, useful for semantic search, clustering, and similarity comparisons.
Before you begin
- Ensure your account has access to embedding models.
- Choose an embedding model (for example,
text-embedding-3-small,text-embedding-3-large,text-embedding-ada-002). - Prepare JSON that matches the embedding schema.
Configure
- Create a new Generate operation or click Import Operation.
- Select Action Type: Generate Embedding
- Click Next to import Request and Response profiles.
- Configure mapping for your input text.
Request Schema (GENERATE EMBEDDING)
{
"model": "text-embedding-3-small",
"input": ["The quick brown fox jumps over the lazy dog"],
"encoding_format": "float",
"dimensions": 1536
}
Response Schema (GENERATE EMBEDDING)
{
"object": "embedding",
"index": 0,
"embedding": [
-0.006929283,
-0.005336422,
0.024265893,
...
]
}
Generate structured output
Generates responses conforming to a user-defined JSON schema, ensuring consistent and parseable output formats.
Before you begin
- Define your desired output JSON schema.
- Prepare the complete
textparameter JSON including format configuration.
Expected format:
{
"format": {
"type": "json_schema",
"name": "name of the schema",
"Schema":{
// Customer's schema
},
"strict": true
}
}
- Choose a compatible model and input.
Configure
- Create a new Generate operation or click Import Operation.
- Select Action Type: Generate Structured Output
- In the Text Parameter (JSON) field, paste your complete text parameter JSON.
- Click Next to import dynamically generated Request and Response profiles.
- Configure mapping for your model, input and other parameters
The text parameter with your schema is automatically injected by the connector based on your design-time configuration, therefore it is not required to be passed at runtime in the process.
Request Schema (GENERATE STRUCTURED OUTPUT)
{
"model": "gpt-4o-mini",
"input": [
{
"role": "user",
"content": "Extract product information from: iPhone 15 Pro - $999, Electronics, Available now"
}
],
"instructions": "Extract structured product information from the text.",
"temperature": 0
}
Response Schema (GENERATE STRUCTURED OUTPUT)
{
"id": "resp_xyz789",
"object": "response",
"created_at": 1699000000,
"model": "gpt-4o-mini",
"status": "completed",
"structured_output": [
{
"product_name": "iPhone 15 Pro",
"price": 999,
"category": "electronics",
"in_stock": true
}
],
"usage": {
"input_tokens": 50,
"output_tokens": 30,
"total_tokens": 80
}
}
Generate operation import wizard
Step 1: Select operation type
- In your Boomi process, add a connector step.
- Select OpenAI (Tech Preview) connector.
- Choose your configured connection.
- Click Import Operation for a new operation.
Step 2: Select action type
For the Generate operation, select from:
- Generate Text
- Generate Images
- Generate Embeddings
- Generate Structured Output
Step 3: Configure structured output (if selected)
- If Structured Output is selected, the Output Schema Format (JSON) field appears.
- Paste your complete text parameter JSON with format and schema.
- The connector validates the JSON structure.
Step 4: Import profiles
- Click Next to proceed.
- The connector imports Request and Response profiles.
- For Structured Output, the Response profile is dynamically generated from your schema.
- Review imported profiles and click Finish.
Troubleshooting
Operation issues
- Empty response or Invalid model specified: Verify model ID is correct
- Truncated response or
max_tokenstoo low: Increasemax_output_tokens - Schema validation fails or Invalid Structured Output schema: Verify JSON schema syntax
- Unexpected format or Wrong object type selected: Re-import operation with correct type
Structured output issues
- Text Parameter error or Missing or invalid JSON: Verify format includes type, name, schema
- Schema not applied or Schema not saved at design time: Re-import operation with schema
- Response not parsed or Invalid schema structure: Verify JSON Schema is valid
Archiving tab
See the topic Connector operation’s Archiving tab for more information.
Tracking tab
See the topic Connector operation’s Tracking tab for more information.
Caching tab
See the topic Connector operation’s Caching tab for more information.